Modeling Aspects: An Implementation-Driven Approach

Wesley Coelho
Department of Computer Science
University of British Columbia
201-2366 Main Mall, Vancouver BC
Canada V6T 174

coelho@cs.ubc.ca

ABSTRACT

Model-Driven Software Development (MDSD) and Aspect-
Oriented Programming (AOP) are two emerging software
engineering paradigms that have developed independently.
We believe that these approaches can be combined to pro-
duce better solutions to problems such as product line en-
gineering. To integrate AOP with MDSD, techniques for
modeling aspect-oriented constructs must be developed. As
a first step, we consider the problem of modeling aspects in a
static program structure. We believe that the limitations of
passive notations inhibit the effectiveness of aspect modeling
techniques that have been previously proposed. Therefore,
we consider the use of interactive and dynamic software vi-
sualizations for aspect modeling. In this paper we describe
an approach to modeling the influence of an aspect in an
existing system.

1. INTRODUCTION

Aspect-Oriented Programming (AOP) [6] enables the mod-
ularization of crosscutting concerns that span an existing
modularization of a system. A new unit of modularity called
an Aspect is used to encapsulate a crosscutting concern. The
benefits of improving the modularity of a program include
improved comprehensibility and reusability. AOP has been
applied to various programming problems including synchro-
nization, logging, error checking and handling, persistence,

as well as design issues, such as capturing design patterns
[5].

AOP technology can also be used to support software prod-
uct line engineering [7]. The Model-Driven Software De-
velopment (MDSD) paradigm has also been applied in this
area. We believe that the different approaches supported by
these technologies can be integrated to improve product line
engineering, as well as solve other programming problems.

To take advantage of Aspect-Oriented Programming in Model-

Driven Software Development, it is necessary to model the
additional concepts introduced by AOP. As a first step, we
consider the notation required to describe an aspect in an ex-
isting system. More specifically, we are interested in model-
ing the static structure of an aspect-oriented program in the
way that a Unified Modeling Language (UML) class diagram
models the structure of an object-oriented program. Al-
though this notation describes an existing implementation,
we believe our approach provides a foundation on which to
understand how to model aspects a priori in a meaningful
way.

Gail C. Murphy
Department of Computer Science
University of British Columbia
201-2366 Main Mall, Vancouver BC
Canada V6T 174

murphy@cs.ubc.ca

Several approaches have been proposed for describing aspect-
oriented concepts in a static program structure diagram [3,
8,9, 4]. Although there is considerable variability in the pro-
posed notations, each approach models AOP with a passive
view that can be presented on paper.

We believe that the nature of the crosscutting concerns mod-
eled by aspect-oriented constructs makes them difficult to
display cleanly in a single passive view. Therefore, we con-
sider the application of dynamic and interactive software
visualizations to AOP modeling. Although this approach is
not limited to one aspect-oriented programming language,
we have chosen AspectJ [1] as an initial target language for
our implementation-driven models.

We describe several passive notations that have been pro-
posed for AOP modeling as well as their limitations in the
following section. Section 3 describes our software-supported
approach to AOP modeling. We outline our plans for future
work in section 4 and conclude in section 5.

2. PASSIVE ASPECT NOTATION

The majority of notations proposed for modeling AOP con-
structs are based on the Unified Modeling Language (UML).
Indeed, several are created using UML’s extensibility con-
structs and are therefore valid UML. These UML-based ap-
proaches can be broadly categorized as examples of two high-
level strategies: 'Aspect as Classifier’ and ’Aspect Binding.’

In the first strategy, a new classifier is introduced to rep-
resent aspects in a manner similar to how a class is mod-
eled in UML, e.g. [9, 8]. This classifier, stereotyped as an
<<aspect>>, is used to encapsulate crosscutting behavior.
These aspect classifiers are then associated with the program
elements they affect by drawing lines connecting them.

A disadvantage of this approach is that the crosscutting con-
cerns often affect a high number of entities in the model. To
display this situation, it is necessary to draw many line con-
nections. This could rapidly result in “graphical tangling” of
crosscutting concerns and a consequent reduction in model
readability [4].

Another category of aspect modeling approaches is to de-
scribe crosscutting behavior separately from the base de-
sign. A binding mechanism is then used to associate cross-
cutting behavior with base program elements. For example,
Clarke and Walker [3] use class diagrams and sequence di-



agrams in UML templates to encapsulate crosscutting be-
havior. Parameters to the template and binding statements
are then used to associate this behavior with the base de-
sign elements. Groher and Shulze [4] separate concerns into
packages. A base package contains the model without cross-
cutting concerns, which are defined in a separate package.
A third package is used to specify how the crosscutting func-
tionality is bound to the base design.

An advantage of the binding approach is that it achieves a
clean separation of base and crosscutting concerns. How-
ever, this separation can make it difficult to quickly under-
stand the influence of a crosscutting concern on the base
design. Parsing the bind statements and searching for the
base elements and corresponding crosscutting behavior im-
poses a high cognitive load. This increases the time required
to understand the model and introduces the possibility that
important program characteristics will be overlooked.

These aspect modeling strategies highlight the conflict be-
tween demonstrating the influence of an aspect on the base
design and avoiding graphical tangling. This conflict will in-
evitably arise when aspects are modeled with a single passive
view. Since it is sometimes important to show the detailed
influence of an aspect, and yet at other times it is important
to abstract the influence, no passive modeling approach is
likely to be ideal for this task.

These limitations of previous modeling techniques suggest
that software-supported visualizations may be more appro-
priate for aspect modeling. The rich functionality that is
possible with a software visualization can allow for dynamic
views that can either show the influence of an aspect on a
base design or abstract it to avoid tangling, depending on
the user’s changing interests. The use of color and inter-
active features can further improve the quality of the mod-
eling experience. In the remainder of this position paper,
we present an approach to modeling aspects with the aid of
software visualization.

3. DYNAMIC ASPECT DIAGRAMS

Our approach to modeling an aspect is to provide a dynamic
diagram of the effect an aspect has on a system to which
it is applied when requested by the modeler. By default,
the dynamic diagram displays a minimal overview of an as-
pect’s influence. The minimal diagram can be expanded
to show additional details of the target aspect’s influence.
Color-coding is used to link base program elements with the
crosscutting behavior that is associated with them. Some
elements of the diagram are constantly visible, while others
become visible in response to user interaction such as mouse
hovering.

As an aspect modeling example, we have selected a simple
AspectJ aspect (Figure 1) and included a snapshot sketch of
a corresponding dynamic aspect diagram in Figure 2. This
aspect implements customer billing in an example telecom-
munications application.

3.1 Notation Overview

Unlike most other approaches to modeling aspects, our no-
tation is based only loosely on UML, though there are many
similarities. We have not used the UML’s extensibility fea-

public aspect Billing {
public static final long LOCAL_RATE = 3;
public static final long LONG_DISTANCE_RATE = 10;

public Customer Connection.payer;
public Customer getPayer(Connection conn) {
return conn.payer;

}

// Caller pays for the call

after(Customer cust) returning (Connection conn):
args(cust, ..) && call(Connection+.new(..)) {
conn.payer = cust;

}

//Connections give the appropriate call rate
public abstract long Connection.callRate();

public long LongDistance.callRate() {
return LONG_DISTANCE_RATE;

}

public long Local.callRate() {
return LOCAL_RATE;

}

// When timing stops, calculate and add the charge
// from the connection time
after(Connection conn): Timing.endTiming(conn) {
long time = Timing.aspectOf () .getTimer (conn)
.getTime () ;
long rate = conn.callRate();
long cost = rate * time;
getPayer (conn) .addCharge (cost) ;
}

// Customers have a bill paying aspect with state

public long Customer.totalCharge = 0;

public long getTotalCharge(Customer cust) {
return cust.totalCharge;

}

public void Customer.addCharge(long charge){
totalCharge += charge;
}

Figure 1: An example aspect that defines customer
billing behavior in a telecommunications applica-
tion.

tures but instead focused on modifying UML constructs to
support aspect modeling.

The notation introduces an additional classifier to represent
aspects. The intent of the aspect classifier is similar that
of a UML ’class’ classifier except it encapsulates additional
member types and relationships necessary for modeling As-
pectJ programs.

The members that can be defined in an aspect classifier in-
clude inter-type declarations, declare parents statements,
advice, and pointcuts. In AspectJ, inter-type declarations
are used in aspects to introduce fields and methods on other
types. Similarly, declare parents statements are used to
cause a type to implement or extend another type. AspectJ
advice are method-like constructs that implement crosscut-
ting behavior. Pointcuts are statements that indicate where
crosscutting behavior is to be applied.



<<Aspect>> Billing Customer
after call{Conne ction+. newd) totalCharge
(= = (> after Timing.endTimingg addChargeq)
I
I
I
: Connection
: payer
callRate(y
@;& Pl
Local
,\/ﬁ Local()
AR, callRate()
Call \wﬁ Long Distance
/uﬂ.x
Callfy N LongDistance()
L—1— hangupg \.,/. callRated
6 T

Indicates the
presence of advice

Advises Relationship Calls Relationship

Figure 2: A snapshot sketch of the dynamic aspect
diagram for the Billing aspect in Figure 1. In this
sketch, the user’s mouse is hovering over an advice
indicator icon, which has caused a relationship to
the contributing advice declaration to be drawn.

Aspect classifiers in the dynamic diagrams support two re-
lationships not found in standard UML. The ’advises’ rela-
tionship associates an advice body with the location in the
static structure where its behavior applies. A call relation-
ship is also used, which is a special case of a UML association
that indicates the existence of a method call.

Our dynamic aspect diagrams use icons to indicate the pres-
ence of crosscutting behavior. For example, behavior that is
executed after (as opposed to before) a point in the base pro-
gram’s execution is indicated with the arrow icon shown in
Figure 2. Additional icons are used to depict other AspectJ
constructs.

Relationship granularity is an important difference between
UML class diagrams and our dynamic aspect diagrams. In
the UML, relationships connect classifiers to other classi-
fiers. For example, a class might aggregate another class.
In dynamic aspect diagrams, we also include member-level
relationships. Method calls from a method in one class to
a specific method in another class can be drawn. Similarly,
advises relationships terminate at the signature of the advice
that provides the behavior rather than the aspect containing
the advice.

When aspect diagrams are first generated, they display an
initial overview of an aspect’s influence. If the model user
wishes to see more details, a '+’ operator is available to ex-
pand the diagram. The expanded diagram typically includes
several more relationships or members that are likely to be
relevant.

3.2 Initial Diagram Generation

The initial diagram of an aspect or set of aspects is gen-
erated by reading certain members in the aspect code and
adding a representation of their impact on the program to
the diagram. The members that are considered during the
initial diagram are those that are directly involved in ap-
plying changes to the base program. Thus, inter-type dec-
larations, declare parents statements, and the effects of
advice are considered while private fields and methods of
the aspect are not included in the initial diagram.

3.2.1 Inter-type Declarations

Inter-type declarations in AspectJ are statements in aspects
that declare fields or methods to be part of another type.
These statements directly impact the base program and are
therefore always included in the initial aspect diagram gen-
eration. The declared members are shown as members of
the target classifier where they have been introduced.

3.2.2 declare parents Statements

Aspect] declare parents statements cause one type to im-
plement or extend another. When such a statement is en-
countered in the aspect, the relevant subtype and supertype
are added to the diagram if not already present. These types
are then connected by the appropriate ’extends’ or ’imple-
ments’ relationship.

3.2.3 Advice

AspectJ ’advice’ are method-like constructs that implement
crosscutting functionality. In dynamic aspect diagrams, ad-
vice are shown as a member in the aspect that declares them.
More importantly, program elements closely associated with
the static shadow of an advice are also included in the dia-
gram.

The static shadow of an advice is the set of all locations in
the static program structure where the advice body might
be applied at run-time. For example, consider a call advice
that advises the call sites at which a specified method is
invoked. In this case the call itself is being advised. We show
this by adding a calls relationship from the advised call site
to the target method. The calls relationship is decorated
with an icon indicating that it is being advised (e.g. the
arrow icon in Figure 2). In some cases, this icon could be
color-coded to correspond to the advice body that advises
it. An ’advises’ relationship is also drawn from this icon to
the advising advice signature. However, this connection is
only shown when the user’s mouse hovers over it to avoid
graphical tangling.

3.3 Abstraction and Examples

Despite the ability to hide 'advises’ relationships until they
are requested, dynamic aspect diagrams could quickly be-
come cluttered with program elements that are influenced
by the aspects the user is investigating. For example, con-
sider a performance profiling aspect that counts the number
of times each method in the program is called. The com-
plete influence diagram for such an aspect would include all
methods in the system. For any non-trivial program, the re-
sulting diagram would be excessively cluttered with classes
and methods.



However, the inclusion of all of these methods is not required
for understanding the effect of the aspect. Therefore, it is
possible to introduce a level of abstraction. A single aggre-
gate classifier and method can be used to represent the set
of all classifiers and methods that are advised by the aspect.
In the resulting profiling aspect diagram, an aspect’s advice
can be shown to advise the call between two methods that
abstract a large underlying set of actual methods advised.
If desired, the user can query the aggregated classifiers or
methods to retrieve a list of the actual elements they repre-
sent. This approach can significantly reduce the diagram’s
complexity.

To aid program comprehension, it may also be beneficial
to show an example of the abstracted entities and relation-
ships. This concrete example is displayed along with the
abstracted entities that represent all other instances of the
element being displayed.

3.4 Automated Diagram Expansion

The initial dynamic aspect diagram provides an overview of
how the system is affected by the selected set of aspects. In
some cases, the user may wish to know additional details
of the aspects’ influence. However, it may not always be
clear what additional program elements and relationships
are important.

We believe that the initial aspect influence diagram can be
expanded automatically to show additional relevant infor-
mation about the aspect and its impact on the system. For
example, it may be informative to show the user additional
members of the aspect or other classifiers in the diagram.
Additional relationships may also be relevant. In particu-
lar, calls made from an advice body may be a key part of
the concern specified by the aspect. In Figure 2, the ’calls’
relationship between the second member (an advice) is an
example of a diagram addition resulting from a request to
expand the diagram.

Dynamic aspect diagrams are expanded to show additional
details by invoking a 4+’ operator. This operator takes as
input the existing diagram and adds to it several additional
details of the target aspects’ influence. The '+’ operator
can be invoked repeatedly until the desired level of detail is
reached.

Not all additional elements are likely to be equally relevant.
Therefore, when the '+’ operator is invoked it must rank
possible additions according to their potential information
value. Possible additions are ranked by their element or re-
lationship type as well as other characteristics such as their
parent’s rank. For example, a method call from an advice
body to a method introduced on another class will have
a higher rank than a class’s private field. The '+’ opera-
tor may also elect to show additional details by replacing
aggregate entities with the previously abstracted concrete
classifiers, members, or relationships.

4. FUTURE WORK

We are currently developing a tool that will generate dy-
namic aspect diagrams for AspectJ. The tool is implemented
as a plug-in for the extensible Eclipse software development
environment [2]. This tool will use icons, color-coding, and

’hovering’ to assist with the aspect influence presentation.
We will also provide an implementation of the '+’ operator
as well as basic diagram abstraction support. An early pro-
totype of this tool will be used to investigate heuristics for
default diagram generation as well as diagram expansion.

When a functioning prototype has been developed, we in-
tend to perform an initial evaluation of this approach by
conducting a small-scale study. The study will investigate
whether users can more effectively implement a software
modification task using the tool rather than with traditional
software engineering tools alone. If use of the tool is asso-
ciated with better change task implementations, then this
will support the hypothesis that dynamic aspect diagrams
are an effective technique for modeling aspects.

5. CONCLUSION

We have shown that passive notations for modeling aspects
either do not adequately show the influence of aspects or
have a tendency to be encumbered by graphical tangling.
Since this tradeoff is inevitable with single-view, passive
modeling approaches, we suggest that software visualiza-
tions may be more effective. We presented dynamic aspect
diagrams as a technique for modeling the influence of an
aspect on an existing software system. Dynamic aspect di-
agrams use color, user interaction, and dynamic expansion
to model aspects. We believe that this approach clearly
displays the effects of an aspect while avoiding graphical
tangling.

6. REFERENCES

[1] Aspect]. http://www.eclipse.org/aspectj/, August
2004.

[2] Eclipse. http://www.eclipse.org/, August 2004.

[3] S. Clarke and R. J. Walker. Composition patterns: An
approach to designing reusable aspects. In International
Conference on Software Engineering, pages 5—14, 2001.

[4] 1. Groher and S. Schulze. Generating aspect code from
UML models. In F. Akkawi, O. Aldawud, G. Booch,
S. Clarke, J. Gray, B. Harrison, M. Kandé, D. Stein,
P. Tarr, and A. Zakaria, editors, The 4th AOSD
Modeling With UML Workshop, 2003.

[5] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 161-173. ACM Press, 2002.

[6] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages
220-242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[7] T. Kishi and N. Noda. Aspect-oriented analysis for
architectural design. In Proceedings of the 4th
international workshop on Principles of software
evolution, pages 126-129. ACM Press, 2002.



[8] D. Stein, S. Hanenberg, and R. Unland. Designing

aspect-oriented crosscutting in UML. In AOSD-UML
Workshop at AOSD ’02 (Enschede, The Netherlands,
Apr. 2002).

J. Suzuki and Y. Yamamoto. Extending UML with
aspects: Aspect support in the design phase. In
ECOOP Workshops, pages 299-300, 1999.



